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1.	Testing	for	non-directional	selection	

We	estimated	non-directional	selection	on	each	trait	(heterozygosity,	log	male	length	and	relative	
gonopodium	length)	using	the	method	of	Henshaw	&	Zemel	(2016).	We	first	calculated	the	
distributional	selection	differential	(DSD)	for	each	trait,	which	quantifies	the	total	strength	of	
selection,	including	both	directional	(i.e.	linear)	and	non-directional	selection.	If	trait	values	are	
ordered	so	that	𝑧" ≤ 𝑧$ ≤ ⋯ ≤ 𝑧&,	then	the	DSD	is	given	by:	

𝑑 = (𝑧*+" − 𝑧*)
1 − 𝑤0
𝑛 − 1

*

02"

&3"

*2"

	

Note	that	we	use	a	divisor	of	𝑛 − 1,	rather	than	𝑛,	for	consistency	with	the	linear	selection	
differential,	which	is	estimated	as	a	sample	covariance.	We	then	calculated	the	non-directional	
component	of	the	DSD	as:	
	

𝑑4 = 𝑑 − 𝑠 ,	
	
where	𝑠	is	the	linear	selection	differential	(Henshaw	&	Zemel	2016).	This	is	an	estimate	of	the	total	
strength	of	non-directional	selection	of	any	kind	(e.g.	stabilising	or	disruptive:	Brodie	et	al.	1995).	
	
We	used	a	permutation	test	to	check	the	significance	of	selection	estimates.	We	generated	null	
distributions	of	𝑑,	𝑠	and	𝑑4	for	each	trait	by	randomly	permuting	relative	fitness	values	among	the	
sampled	individuals	10	000	times	and	calculating	these	three	statistics	each	time.	We	then	estimated	
p-values	by	calculating	the	proportion	of	null-distributed	values	that	were	at	least	as	large	(in	
absolute	value)	as	the	observed	values.		
	
Both	directional	and	total	selection	on	heterozygosity,	male	body	length	and	gonopodium	length	
were	highly	significant	(Table	S1),	consistent	with	results	in	the	main	text	(cf.	Table	2).	Estimates	of	
non-directional	selection	were	small	and	non-significant	(Table	S1).	
	
	



Table	S1.	Total	selection	(measured	as	the	distribution	selection	differential	𝑑),	directional	selection	
(linear	selection	differential	𝑠)	and	non-directional	selection	(𝑑4 = 𝑑 − 𝑠 )	for	male	traits	in	
Gambusia	holbrooki.	Relative	fitness	was	calculated	within	ponds	and	male	traits	were	standardised	
across	the	experiment.	

	

Trait	 Statistic	 p	

Percent	heterozygosity	 𝑑 = 0.017	
𝑠 = 0.017	
𝑑4 < 0.001	

<0.001	
<0.001	
1.00	

Log	standard	length		 𝑑 = 0.013	
𝑠 = −0.013	
𝑑4 < 0.001	

0.01	
0.01	
0.93	

Relative	gonopodium	length		 𝑑 = 0.411	
𝑠 = 0.410	
𝑑4 = 0.001	

<0.001	
<0.001	
0.97	

	
	

	

2.	Methods	for	simulations	to	test	for	bias	in	selection	gradients	

We	ran	simulations	to	test	for	possible	bias	introduced	by	subsampling	females	in	the	female-biased	
pools	(n	=	5	of	20	females)	in	the	experiment	(see	Mathematica	code	below).	The	simulations	were	
designed	and	parameterised	so	that	the	data	they	generate	is	broadly	consistent	with	those	from	
the	experiment	(e.g.	similar	mean	and	variance	in	estimated	male	reproductive	success).	For	each	
trial,	we	simulated	mating	and	reproductive	success	in	a	pool	of	10	males	and	20	females	
(corresponding	to	the	female-biased	OSR	in	the	experiment).	We	calculated	selection	gradients	on	
two	simulated	male	traits	for	both	(i)	the	full	sample	of	20	females,	and	(ii)	a	random	subsample	of	5	
females.	We	found	negligible	differences	in	average	selection	gradients	between	these	two	groups	
over	a	large	number	of	trials	(see	below).	We	conclude	that	the	subsampling	procedure	does	not	
introduce	appreciable	bias.	

Mating	and	post-copulatory	success	were	assumed	to	be	partly	determined	by	male	traits	𝑍>	and	𝑍?	
respectively,	which	were	drawn	from	standard	normal	distributions.	Mating	success	𝑀	was	
generated	as	a	random	normal	variable	with	a	mean	and	standard	deviation	equal	to	3,	and	a	
correlation	of	𝜌	with	𝑍>.	Higher	values	of	𝜌	mean	that	𝑍>	has	a	stronger	effect	on	mating	success.	
We	rounded	values	of	𝑀	to	the	nearest	integer	and	then	converted	any	negative	values	to	zero.	
Mates	for	each	male	were	chosen	from	among	the	20	females	at	random.		

For	every	female	that	mated	at	least	once,	we	generated	a	normally	distributed	number	of	offspring	
with	a	mean	of	10	and	a	standard	deviation	of	5.	We	rounded	offspring	numbers	to	the	nearest	
integer	and	then	converted	any	negative	values	to	zero.	Sires	were	chosen	from	the	mother’s	mates	
at	random,	such	that	a	male’s	probability	of	siring	any	particular	offspring	was	proportional	to	
exp(𝛼𝑍?).	Larger	values	of	𝛼	mean	that	𝑍?	has	a	stronger	impact	on	male	post-copulatory	success.	



We	calculated	relative	reproductive	success	for	each	male	over	the	full	sample	of	20	females,	and	
over	the	random	subsample	of	5	females.	We	then	calculated	selection	gradients	on	the	two	male	
traits,	denoted	as	𝛽 = [𝛽>, 𝛽?]	for	the	full	samples	and	𝛽 = [𝛽>, 𝛽?]	for	the	subsamples.	The	bias	
due	to	subsampling	is	𝔼(𝛽 − 𝛽).	We	estimated	this	bias	by	running	10J	trials	for	each	combination	
of	the	parameters	𝜌 = 0, 0.2, 0.5	and	𝑎 = 0, 0.5, 1.	This	covers	a	range	of	selection	intensities,	
including	those	observed	in	the	experiment.	Estimated	bias	was	always	less	than	103N,	indicating	
that	the	subsampling	procedure	does	not	introduce	appreciable	bias.	

	

	

	

3.	Mathematica	code	for	simulations	

(*This	code	is	written	for	Wolfram	Mathematica,	Version	11.0.	The	code	appears	in	regular	
typeface,	with	comments	in	bold*)	

NumRuns	=	1000000;	

	

(*Male	and	female	sample	sizes	as	in	the	experiment*)	

FemaleFullSampleSize	=	20;	

FemaleSubsampleSize	=	5;	

MaleSampleSize	=	10;	

	

(*The	parameters	rho	and	alpha	respectively*)	

MatingTraitCorrelation	=	0.5;		

PaternitySlope	=	0.5;	

	

(*Start	tallies	that	are	used	later*)	

betaSubTally	=	0;	

betaDifTally	=	0;	

NumGoodRuns	=	NumRuns;	

	

(*A	matrix	used	to	generate	correlated	normal	random	variables*)	

MatingTraitCholesky	=		

CholeskyDecomposition[{{1,	MatingTraitCorrelation},	{MatingTraitCorrelation,	1}}];	



	

(*This	loop	repeats	10^6	times*)	

Do[	

	

(*Generate	the	mating	trait	Z_M	and	a	correlated	normal	variable	that	will	be	used	to	calculating	
mating	success*)	

{MatingTrait,	MatingSuccessGenerator}	=		

Transpose[Map[#.MatingTraitCholesky	&,	RandomReal[NormalDistribution[0,	1],	{MaleSampleSize,	
2}]]];	

	

(*Generate	male	mating	success*)	

MaleMatingSuccess	=	Round[Max[0,	#]]	&	/@	(3	+	3	MatingSuccessGenerator);	

	

(*Generate	the	paternity	trait	Z_P*)	

PaternityTrait	=	RandomReal[NormalDistribution[0,	1],	MaleSampleSize];	

	

(*Choose	each	male's	mates	at	random	from	the	20	females*)	

MaleMates	=		

Table[RandomSample[Array[#	&,	FemaleFullSampleSize],		

MaleMatingSuccess[[i]]],	{i,	1,	MaleSampleSize}];	

	

(*Assign	each	female	the	appropriate	male	mates*)	

FemaleMates	=	ConstantArray[{},	FemaleFullSampleSize];	

	

Do[AppendTo[FemaleMates[[MaleMates[[i,	j]]]],	i];	

,	{i,	1,	Length[MaleMates]},	{j,	1,	Length[MaleMates[[i]]]}];	

	

(*Generate	female	reproductive	success.	For	females	that	don't	mate	this	value	is	ignored*)	

FemaleReproductiveSuccess	=		

Round[Max[0,	#]]	&	/@	RandomReal[NormalDistribution[10,	5],	FemaleFullSampleSize];	

	



(*Generate	an	empty	parental	table,	i.e.	the	number	offspring	produced	by	each	female-male	pair,	
to	be	filed	in	below*)	

ParentalTable	=			ConstantArray[0,	{FemaleFullSampleSize,	MaleSampleSize}];	

	

(*This	loop	runs	for	each	female*)	

Do[	

	

If[FemaleMates[[fem]]	!=	{},	

	

(*Determine	the	father	for	each	of	the	female's	offspring.		

Each	mate's	siring	probability	is	proportional	to	his	value	of	exp(alpha*Z_P)*)	

offspring	=	RandomChoice[Exp[PaternitySlope*PaternityTrait[[FemaleMates[[fem]]]]]	->		

FemaleMates[[fem]],	FemaleReproductiveSuccess[[fem]]]];	

	

(*This	loops	runs	for	each	of	the	female's	mates*)	

Do[	

	

(*Add	that	mate's	offspring	to	the	parental	table*)	

ParentalTable[[fem,	FemaleMates[[fem,	malno]]]]	=		

Count[offspring,	FemaleMates[[fem,	malno]]];	

	

,	{malno,	1,	Length[FemaleMates[[fem]]]}];	

	

,	{fem,	1,	FemaleFullSampleSize}];	

(*End	both	loops*)	

	

(*Calculate	male	reproductive	success	for	the	full	sample	from	the	parental	table*)	

RFullSample	=	Total[ParentalTable];	

	

(*Create	a	subsample	of	the	parental	table	containing	only	5	females*)	



ParentalTableSubsample	=		RandomSample[ParentalTable,	FemaleSubsampleSize];	

		

(*Calculate	male	reproductive	success	for	the	subsample*)	

RSubsample	=	Total[ParentalTableSubsample];	

	

(*Standardise	both	males	traits*)	

{MatingTrait,	PaternityTrait}	=	

((#	-	Mean[#])/StandardDeviation[#])	&	/@	{MatingTrait,	PaternityTrait};	

	

(*Calculate	selection	gradients	on	the	male	traits	for	both	the	full	sample	(betaFull)	and	the	
subsample	(betaSub)	and	then	take	their	difference	(betaDif)*)	

Quiet[betaFull	=	{(#[1,	0]	-	#[0,	0]),	(#[0,	1]	-	#[0,	0])}	&@	

LinearModelFit[Transpose[{MatingTrait,	PaternityTrait,	FullSample/Mean[RFullSample]}],	{z1,	z2},	
{z1,	z2}];	

	

betaSub	=	{(#[1,	0]	-	#[0,	0]),	(#[0,	1]	-	#[0,	0])}	&@	

LinearModelFit[Transpose[{MatingTrait,	PaternityTrait,	RSubsample/Mean[RSubsample]}],	{z1,	z2},	
{z1,	z2}];	

	

betaDif	=	betaSub	-	betaFull];	

	

(*Add	betaSub	and	betaDif	to	their	respective	tallies,	assuming	nothing	weird	went	wrong	(e.g.	
zero	variance	in	one	variable).	In	case	of	weird	things,	remove	the	trial	from	the	analysis.	This	
affects	only	a	very	small	proportion	of	trials*)	

If[Element[betaDif[[1]],	Reals]	&&	Element[betaDif[[2]],	Reals],	

	

betaSubTally	=	betaSubTally	+	betaSub;	

betaDifTally	=	betaDifTally	+	betaDif;,	

	

NumGoodRuns	=	NumGoodRuns	-	1];	

	

,	{gen,	1,	NumRuns}]	



(*End	main	loop*)	

	

(*Print	the	average	selection	gradients	in	the	subsample*)	

betaSubTally/NumGoodRuns	

	

(*Print	the	bias	in	the	selection	gradients	due	to	subsampling*)	

betaDifTally/NumGoodRuns	

	

	

	

4.	Paternity	Analysis	

	
DNA	samples	were	sent	to	the	commercial	genotyping	service	Diversity	Arrays	This	company	has	
developed	a	widely	used	technique	called	DArTseq™.		DArTseq™	represents	a	combination	of	DArT	
complexity	reduction	methods	and	next	generation	sequencing	platforms	(Kilian	et	al,	2012;	
Courtois	et	al,	2013;	Cruz	et	al.	2013;	Raman	et	al.	2014;).	It	is	a	new	implementation	of	sequencing	
complexity	reduced	representations	(Altshuler	et	al,	2000)	and	more	recent	applications	of	this	
concept	on	next	generation	sequencing	platforms	(Baird	et	al,	2008;	Elshire	et	al,	2011).		The	
technology	is	optimized	by	selecting	the	most	appropriate	complexity	reduction	method	based	on	
both	the	size	of	the	representation	and	the	genome	fraction	selected	for	assays.	Four	methods	of	
complexity	reduction	were	tested	in	Gambusia	and	the	PstI-HpaII	method	was	selected.		DNA	
samples	were	processed	in	digestion/ligation	reactions	principally	as	per	Kilian	et	al	(2012),	but	
replacing	a	single	PstI-compatible	adaptor	with	two	different	adaptors	corresponding	to	two	
different	Restriction	Enzyme	(RE)	overhangs.	The	PstI-compatible	adapter	was	designed	to	include	
Illumina	flowcell	attachment	sequence,	sequencing	primer	sequence	and	“staggered”,	varying	length	
barcode	region,	similar	to	the	sequence	reported	by	Elshire	et	al	(2011).	The	reverse	adapter	
contained	flowcell	attachment	region	and	HpaII-compatible	overhang	sequence.	Only	“mixed	
fragments”	(PstI-HpaII)	were	effectively	amplified	in	30	rounds	of	PCR	using	the	following	reaction	
conditions:	1.	94̊	C	for	1	min;	2.	30	cycles	of	94̊	C	for	20	sec,	58̊	C	for	30	sec,	72̊	C	for	45	sec;	3.	72̊	C	
for	7	min.	After	PCR	equimolar	amounts	of	amplification	products	from	each	sample	of	the	96-well	
microtiter	plate	were	bulked	and	applied	to	c-Bot	(Illumina)	bridge	PCR	followed	by	sequencing	on	
Illumina	Hiseq2500.		The	sequencing	(single	read)	was	run	for	77	cycles.	

Sequences	generated	from	each	lane	were	processed	using	proprietary	DArT	analytical	pipelines.	In	
the	primary	pipeline	the	fastq	files	were	first	processed	to	filter	out	poor	quality	sequences,	applying	
more	stringent	selection	criteria	to	the	barcode	region	than	the	rest	of	the	sequence.	In	that	way	the	
assignments	of	the	sequences	to	specific	samples	carried	in	the	“barcode	split”	step	are	very	
reliable.		Approximately	2	500	000		(±7%)	sequences	per	barcode/sample	are	used	in	marker	calling	
in	routine	DArTseq	assay,	but	we	applied	a	more	cost	effective	version	using	1	300	000		per	sample).		
Finally,	identical	sequences	were	collapsed	into	“fastqcall	files”	used	in	the	secondary	pipeline	for	
DArT	PL’s	proprietary	SNP	and	SilicoDArT	(presence/absence	of	restriction	fragments	in	
representation)	calling	algorithms	(DArTsoft14).	This	clean-up	process	resulted	in	a	comprehensive	
data	set	of	approximately	3171	SNPs	with	an	average	call	rate	of	97.7%	and	a	reproducibility	rate	of	
99.3%.			



5.	Reproductive	success	of	females	
To	test	whether	our	treatments	influenced	female	reproductive	output	we	ran	GLMMs.	The	number	
of	broods	(0,	1	or	2)	was	analysed	using	an	ordinal	logistic	regression	in	the	package	“ordinal”	using	
the	command	clmm	to	allow	for	random	effects.	For	those	females	that	bred	we	also	analysed	the	
number	of	offspring	in	her	first	brood,	gestation	time	(days	between	leaving	the	pool	and	giving	
birth),	and	the	total	number	of	offspring	a	female	produced	using	models	with	Poisson	error	that	
included	an	individual	level	random	effect	when	data	were	over-dispersed	(Harrison	2014).	In	all	
models	OSR,	habitat	and	female	standard	length	(centred	to	a	mean	of	0;	(Gelman	2008))	and	their	
interactions	were	specified	as	fixed	effects.	Pool	identity	was	treated	as	a	random	effect.	

Neither	gestation	time,	the	number	of	offspring	in	the	first	brood	nor	the	total	number	of	offspring	a	
female	produced	were	influenced	by	the	adult	sex	ratio,	habitat	complexity	or	the	interaction	
between	them	(Table	S2).	The	number	of	broods	per	female	was,	however,	influenced	by	an	
interaction	between	female	length	and	the	OSR.	With	a	female-biased	adult	sex	ratio	smaller	
females	produced	more	broods	than	larger	females,	whereas	with	a	male-biased	sex	ratio	there	was	
a	weak	relationship	in	the	opposite	direction	(Fig.	S6).	There	was	no	effect	of	habitat	complexity.	
Trait	means	for	each	treatment	are	shown	in	Table	S3.	

	

	 	



Table	S2.	The	effects	of	OSR	and	habitat	complexity	on	female	reproductive	output.	

Trait	 Term	 Estimate	 SE	 z	 P	
Number	of	broods	 OSR	(m)	 -0.614	 0.821	 -0.748	 0.454	
	 Habitat	(s)	 -0.444	 0.748	 -0.594	 0.553	
	 Standard	length	(SL)	 -1.226	 0.532	 -2.302	 0.021	
	 OSR(m)*Habitat	(s)	 0.469	 1.157	 0.405	 0.685	
	 OSR(m)*SL	 2.323	 1.004	 2.314	 0.021	
	 Habitat(s)*SL	 0.374	 0.733	 0.511	 0.670	
	 OSR(m)*Habitat(s)*SL	 -0.953	 1.352	 -0.705	 0.481	
Gestation	time	 Intercept	 3.766	 0.037	 102.11	 <0.001	
(days)	 OSR	(m)	 -0.096	 0.082	 -1.17	 0.243	
	 Habitat	(s)	 -0.029	 0.052	 -0.57	 0.569	
	 Standard	length	(SL)	 0.034	 0.077	 0.44	 0.661	
	 OSR(m)*Habitat	(s)	 -0.028	 0.114	 -0.25	 0.806	
	 OSR(m)*SL	 0.107	 0.168	 0.64	 0.525	
	 Habitat(s)*SL	 -0.029	 0.106	 -0.28	 0.782	
	 OSR(m)*Habitat(s)*SL	 -0.149	 0.222	 -0.67	 0.501	
Offspring	brood	1	 Intercept	 1.692	 0.089			 19.108				 <0.001	
	 OSR	(m)	 0.282					 0.197				 1.437					 0.151					
	 Habitat	(s)	 0.181				 0.122				 1.479					 0.139					
	 Standard	length	(SL)	 0.050					 0.181				 0.278					 0.781					
	 OSR(m)*Habitat	(s)	 -0.393					 0.275			 -1.428					 0.153					
	 OSR(m)*SL	 -0.198					 0.410			 -0.483					 0.629					
	 Habitat(s)*SL	 0.061					 0.277				 0.219					 0.827					
	 OSR(m)*Habitat(s)*SL	 0.263					 0.548				 0.480					 0.631					
Total	offspring	 Intercept	 1.887	 0.128	 14.769	 <0.001	
	 OSR	(m)	 0.255	 0.236	 1.079	 0.281	
	 Habitat	(s)	 0.034	 0.180	 0.192	 0.848	
	 Standard	length	(SL)	 0.095	 0.203	 0.469	 0.639	
	 OSR(m)*Habitat	(s)	 -0.369	 0.332	 -1.111	 0.266	
	 OSR(m)*SL	 -0.277	 0.422	 -0.656	 0.512	
	 Habitat(s)*SL	 0.096	 0.295	 0.325	 0.746	
	 OSR(m)*Habitat(s)*SL	 0.239	 0.562	 0.425	 0.671	
Bold	indicates	significant	effect	

	

	

Table	S3.	Female	reproductive	output	in	each	treatment,	mean	(SE)	

	 Female-biased	 Male-biased	
Trait	 Complex	 Simple	 Complex	 Simple	

Number	of	broods	 0.94	(0.065)	
N=120	

0.83	(0.060)	
N=120	

0.80	(0.130)	
N=30	

0.80	(0.101)	
N=30	

Gestation	time	
(days)	

44.77	(1.786)	
N=86	

43.65	(1.810)	
N=83	

41.26	(3.334)	
N=19	

37.45	(1.389)	
N=22	

Offspring	brood	1	 6.52	(0.493)	
N=86	

7.77	(0.574)	
N=83	

8.63	(1.501)	
N=19	

7.64	(1.411)	
N=22	

Total	offspring	 8.26	(0.644)	
N=86	

8.64	(0.662)	
N=83	

10.79	(1.877)	
N=19	

8.09	(1.446)	
N=22	



3.	Supplementary	figures	

	

 

Figure	S1.	Schematic	of	experimental	ponds	A)	female-biased	simple	habitat,	B)	female-biased	
complex	habitat,	C)	male-biased	simple	(left)	and	complex	(right).	Ponds	were	1m	in	diameter	and	
water	depth	was	15cm.	Females	are	red	and	males	are	blue.	
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Figure	S2.	The	relationship	between	mean	heterozygosity	and	log	male	standard	length	

	

		

Figure	S3.	The	relationship	between	mean	heterozygosity	and	male	relative	gonopodium	length.	The	
outlier	in	this	figure	is	not	due	to	measurement	error.	Its	exclusion	does	not	alter	the	conclusions	of	
our	analyses.	
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Figure	S4.	The	relationship	between	male	mean	heterozygosity	and	the	number	of	offspring	he	
sired.	Male-biased	simple	habitat	(open	circles,	solid	line),	Male-biased	complex	habitat	(open	
triangles	dash-dot	line),	Female-biased	simple	habitat	(closed	circles,	dot	line),	female-biased	
complex	habitat	(closed	triangles,	dash	line).	

	

	

Figure	S5.	The	relationship	between	male	log	standard	length	and	the	number	of	offspring	he	sired.	
Male-biased	simple	habitat	(open	circles,	solid	line),	Male-biased	complex	habitat	(open	triangles	
dash-dot	line),	Female-biased	simple	habitat	(closed	circles,	dot	line),	female-biased	complex	habitat	
(closed	triangles,	dash	line).	

	 	



	

Figure	S6.	The	relationship	between	number	of	broods	and	female	size	for	male	biased	(open	circles)	
and	female	biased	(black	diamonds)	treatments.	Number	of	female	that	had	no	broods	-	female	
biased	=	71,	male	biased	=	19;	number	of	females	that	had	one	brood	–	female	biased	=	125,	male	
biased	=	34;	number	of	females	that	had	2	broods	–	female	biased	=	44,	male	biased	=	7.	
	

	

	


