The Economics of Egg Trading;:
Mating Rate, Sperm Competition and
Positive Frequency-Dependence

Jonathan M. Henshaw, Michael D. Jennions, Hanna Kokko

SUPPLEMENTARY MATERIAL

Here we present the computer code for the simulation model. It is written
for Wolfram Mathematica v.8 and was used to generate data for Figures 1
and 2 in the main text. Comments are given in bold, while the code itself
appears in regular typeface.

m = 2; (* Mating rate *)
initT = 0.1; (* Initial proportion of traders *)
tau = 0.0; (* Window of time for streakers to join a mating pair *)

d = 0.5; (* Amount by which a streaker’s paternity is discounted
relative to the male-role mate *)

initPopSize = 500; (* Initial size of the population *)

k = 500; (* Approximate carrying capacity of the population *)

(* Initialise the population. Each individual is represented by a
vector {a,b,c}, where:

a = 1 for traders, a = 0 for non-traders;

b is the number of eggs the individual is carrying (initially zero);
c is the time of last mating (initially zero) *)

pop = Array|{Boole|# /initPopSize <= initT], 0, 0} &, initPopSize];
time = 0; (* Time starts at zero *)
event = 0; (* The number of events starts at zero *)

fixedQ = 2; (* ‘fixedQ’ determines whether trading has gone to fix-
ation (value 1), gone extinct (value 0) or neither (value 2) *)

(* The loop below generates a series of matings and deaths until
either trading or non-trading goes to fixation *)

While[fixedQ == 2,

PopSize = Length|pop|; (* Count the number of individuals in the
population *)

pop = Permute[pop, RandomPermutation|PopSize||; (* Randomise the
order of individuals in the population *)

(* Generate random variables for the times until the next death
and the next mating. The smaller of these two values determines
which event occurs first *)

NextDeath = RandomReal[ExponentialDistribution|PopSize"2/k]];
NextMating = RandomReal|ExponentialDistribution|m*PopSize"2/(2k)||;

time = time + Min|NextDeath, NextMating|; (* Increase the current
time by the time elapsed since the last event *)

If[NextDeath < NextMating, (* If death occurs first. .. *)

pop = pop|[1 ;; -2]], (* ...then remove the last individual from the
population®)

(* Otherwise, mating occurs first, so generate the number of streak-
ers as a Poisson random variable *)

S = Ifftau == 0, 0, Min[RandomInteger[PoissonDistribution|tau*m*PopSize/k]],
PopSize — 2]|;

maters = pop||1 ;; 2 + S||; (* Select two mating individuals plus streak-
ers from the population *)

(* Increase the number of eggs of each individual in the mating
pair by a Poisson random variable with mean equal to the time
since last mating *)

maters|[1 ;; 2, 2|] = maters|[1 ;; 2, 2||
+ Map|RandomInteger[PoissonDistribution|#]| &, (time — maters|[1 ;; 2, 3]])];

maters|[1 ;; 2, 3]] = time; (* Set the mating individuals’ time of last
mating to the current time *)

(* Calculate the number of eggs offered by each mate *)

(* If the first individual is a trader, then it offers zero eggs if its
partner is not carrying any eggs. If the partner is carrying eggs,
the trader gives the minimum of its own egg number and its part-
ner’s egg number plus one. If the first individual is a non-trader,
it gives all of its eggs. *)

eggsl = Iflmaters|[1, 1|]] == 1, Ifjmaters|[2, 2|]] == 0, 0,
Min|maters|[1, 2||, maters|[|2, 2|| + 1]|, maters|[1, 2]||;

(* Similarly, if the second individual is a trader, then it offers zero
eggs if its partner is not carrying any eggs. If the partner is carry-
ing eggs, the trader gives the minimum of its own egg number and
its partner’s egg number. If the second individual is a non-trader,
it gives all of its eggs. *)

eggs2 = Iflmaters|[2, 1|] == 1, Ifjmaters|[1, 2|]] == 0, 0,
Min|maters|[1 ;; 2, 2]||], maters|[2, 2]|];

maters||1 ;; 2, 2|| = maters|[1 ;; 2, 2]] — {eggsl, eggs2}; (* Reduce each
mate’s egg total by the number offered *)

pop|[1 ;; 2|]] = maters||1 ;; 2]]; (* Update the population vector *)

(* Assign paternity for each set of eggs based on a weighted raffle,
with sneakers’ share of paternity discounted by d *)

weights = Join[{1}, Array|d &, S]];
suitorsl = Join[{2}, Array[2 + # &, S]];
suitors2 = Join[{1}, Array[2 + # &, S]];

paternityl = Array[RandomChoice|weights -> suitorsl| &, eggsl|;
paternity2 = Array[RandomChoice|weights -> suitors2| &, eggs?2];

(* Generate the offspring resulting from each set of eggs. The gene
for trading behaviour is taken from the mother or the father with
equal probability *)

kidsl = Array[{RandomChoice[{maters|[1, 1||, maters|[paternity1[[#]], 1]|}].
0, time} &, eggsl|;

kids2 = Array[{RandomChoice[{maters|[2, 1]|, maters|[paternity2[[#]], 1]|}].
0, time} &, eggs2];

pop = Join|pop, kids1, kids2|]; (* Add the offspring back into the pop-
ulation *)

(* If either trading or non-trading is fixed in the population, set
‘fixedQ’ appropriately *)

If| Total[pop|[All, 1]]] == Length|pop]|, fixedQ = 1J;
If| Total[pop|[All, 1]|]] == 0, fixedQ = 0];

event++|; (* Increase the number of events by one *)

(* Print which strategy was fixed, the number of events until fixa-
tion, and the time until fixation *)

Print|[fixedQ,event, time]

